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Abstract
By means of ab initio calculations we have revealed a newly discovered Ca3Si4

compound to be a semiconductor. It is characterized by an indirect transition of
0.35 eV. A peculiar dispersion of the last valence band and the first conduction
band, displaying a loop of extrema, has been found. This feature leads to large
anisotropy of the mobility of holes and electrons. We also present the dielectric
function of this material in comparison with data for another semiconducting
calcium silicide Ca2Si.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Semiconducting silicides have been intensively investigated because of their potential use in
thermoelectric and optoelectronic applications [1]. Much attention has focused on transition
metal silicides like β–FeSi2, while compounds of silicon with alkaline-earth metals (Mg, Ca,
Ba) have been less studied. Among the latter only Mg2Si and BaSi2 have been reported to be
semiconductors [1]. Recently, by means of ab initio calculations, we have shown that Ca2Si
also displays semiconducting properties [2]. This issue has been confirmed by calculations
within the GW approximation [3], indicating that the appearance of a new semiconducting
compound in the Ca–Si system is not excluded. In fact, the phase diagram of the Ca–Si
system was reinvestigated by Manfrinetti et al [4] and a new compound—Ca3Si4—was found.
It crystallizes in the hexagonal structure (space group P63/m) and has the following lattice
constants: a = 8.541 Å and c = 14.906 Å. The unit cell consists of six formula units
where Ca and Si atoms are grouped respectively into four inequivalent sites. To the best of
our knowledge there is no information about electronic and optical properties of Ca3Si4, and
this inspired us to perform a theoretical study. Thus, in this paper we will present the band
structure, density of states and the real and imaginary part of the dielectric function of Ca3Si4

as calculated by different first principles methods in addition to our predictions on the hole
mobility with temperature.
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Figure 1. The hexagonal Brillouin zone.

2. Computational details

The first principles total energy code VASP with a plane-wave basis-set and ultrasoft
pseudopotentials (USPP), described in detail elsewhere [5, 6], was used for full structural
optimization. We applied exchange and correlation potentials using the local density
approximation (LDA) of Ceperly and Alder as parameterized by Perdew and Zunger [7],
and the generalized gradient approximation (GGA) of Perdew and Wang [8]. Total energy
minimization, via an optimization of the lattice parameters and a relaxation of the atomic
positions in a conjugate gradient routine, was obtained by calculating the Hellmann–Feynman
forces and the stress tensor. The Pulay corrections have been included in order to compensate
for changes of the basis set due to a variation in the shape of the unit cell. We set the energy
cutoff at 330 eV and used a 7 × 7 × 3 grid of Monkhorst–Pack points. The atomic relaxation
was stopped when forces on atoms were less than 0.01 eV Å

−1
. To ensure convergence the

final iterations were performed on a 9 × 9 × 5 grid. The calculation of band structures was
carried out on the obtained self-consistent charge densities.

The electronic band structure and dielectric function have been calculated by using a
full-potential linearized augmented plane wave method (FLAPW) realized in the WIEN2k
package [9]. We applied the same GGA approximation [8] along with the structural parameters
fully optimized by USPP. The self-consistent procedure was carried out with the energy cut-off
constant RMT · Kmax = 7 and on the mesh of 36 k-points in the irreducible part of the Brillouin
zone shown in figure 1. The integration on the Brillouin zone was performed by the tetrahedron
method with Blöchl corrections. A dense mesh of 686 k-points was generated to calculate the
total and projected densities of states (DOS) as well as the dipole matrix elements and the
imaginary and real parts of the dielectric function. The effective mass tensors for holes and
electrons were evaluated along the principal axes of the ellipsoidal energy surface in the band
extrema by calculating the appropriate second derivatives within the five-point approximation.
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Table 1. Optimized lattice constants (in Å) and their ratios as calculated by USPP in comparison
with experimental data [4].

a c a /c

Theory (LDA) 8.359 14.550 0.575
Theory (GGA) 8.534 14.881 0.573
Experiment 8.541 14.906 0.573

Table 2. Theoretical atomic coordinates (fractional positions in units of the primitive translation
vectors), obtained by USPP with the GGA along with experimental data [4].

x y z

Experiment Theory Experiment Theory Experiment Theory

Ca(1) 0.4212 0.4215 0.3287 0.3280 0.0975 0.0976
Ca(2) 1/3 1/3 2/3 2/3 1/4 1/4
Ca(3) 0 0 0 0 0 0
Ca(4) 0 0 0 0 1/4 1/4
Si(1) 0.0898 0.0909 0.3522 0.3540 0.1102 0.1098
Si(2) 0.3831 0.3815 0.0558 0.0559 1/4 1/4
Si(3) 1/3 1/3 2/3 2/3 0.0568 0.0571
Si(4) 2/3 2/3 1/3 1/3 1/4 1/4

3. Results and discussion

3.1. Optimization of the crystal structure

The lattice parameters as optimized by USPP with LDA and GGA in comparison with
experimental data are summarized in table 1. It is evident that LDA sizeably underestimates
the lattice constants whereas the GGA predictions, while still underestimated, are very close
to experimental values. In order to compare theoretical (zero temperature) and experimental
(room temperature) results, the corresponding thermal expansion coefficients (which are
unknown) should be taken into account. Thus, in the case of Ca3Si4 GGA is a preferable
choice. In addition to that, in table 2 we also present optimized atomic coordinates calculated
with the GGA; these are found to differ only in the third or forth significant digit with respect
to the experimental ones. It should also be mentioned that the atomic coordinates as optimized
by LDA (not shown here) are very closed to experimental results. This effect can be explained
by the fact that both LDA and GGA predict the correct a/c ratio (table 1) even though LDA
provides the smaller equilibrium volume.

3.2. Band structure and density of states

The band structure of Ca3Si4 along some high-symmetry directions in the Brillouin zone is
shown in figure 2. It displays the indirect band-gap of 0.37 eV: the valence band maximum
locates at 0.4×�–M and the conduction band minimum stands at 0.7×M–K. It is clearly seen
that the last valence band possesses two well-pronounced maxima at 0.4 × �–M and 0.6 × K–
� separated by a few meV. The first conduction band is also characterized by two minima at
0.7 × M–K and 0.2 × K–�, which are close in energy, in addition to a very small dispersion of
the band along the M–L and H–K directions. In order to clarify the position of the valence band
maximum we have calculated band structures along �–M, �–T1, �–T2, �–T3 and �–K (see
the corresponding segments of the Brillouin zone in figure 1) which are presented in figure 3.
Strictly speaking, the maximum along the �–T2 segment is found to be 20 meV higher in
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Figure 2. Band structure of Ca3Si4 along some symmetry directions of the Brillouin zone (see
figure 1) as calculated by FLAPW (solid line) and USPP (dashed line).
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Figure 3. Band structure of Ca3Si4 along �–M, �–T1, �–T2, �–T3, �–K and K–�, K–�1, K–�2,
K–�3, K–M segments (see figure 1) indicating the loop of extrema for the last valence band and
the first conduction band, respectively. The solid and dashed lines correspond to the FLAPW and
USPP calculations, respectively. Arrows show the position of the local maxima/minima along each
segment.

energy with respect to the one along �–M, leading to an indirect gap of 0.35 eV. In addition,
all maxima of the last valence band along each segment indicated by arrows in figure 3 are

4



J. Phys.: Condens. Matter 19 (2007) 346207 D B Migas et al

Γ

M
K

Figure 4. The map of the loops of extrema in the Brillouin zone around the � (valence band) and
K (conduction band) points.
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Figure 5. The total and projected DOS (states/eV/cell) of Ca3Si4 as calculated by FLAPW. The
vertical dashed line corresponds to the Fermi level, which is set to zero energy.

very close in energy, as if the loop of extrema is formed around the � point (figure 4). Similar
effects can be traced for the first conduction band where the loop of extrema is found around
the K point (see figures 3 and 4). We do not think that the loop of extrema is an unique feature
of the Ca3Si4 band structure because it could be present for iron monosilicide FeSi (compare
the dispersion of the last valence band and the first conduction band along the M–� and �–R
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Table 3. The principal axis components of the effective mass tensor for holes and electrons in units
of the free-electron mass.

Holes Electrons

mxx myy mzz mxx myy mzz

0.46 �1 0.83 �1 0.70 1.01

segments in figure 6 of [10]). It should be mentioned here that both USPP and FLAPW methods
provide the same dispersion for the bands close to the gap region (figure 3).

The dependence of the total and projected DOS on energy is shown in figure 5. It is clearly
seen that the valence band is split over several parts. The narrow peaks mainly composed of
the Si-s states are located at −10, −9.6, −9, −8.1, −7.4, −5.7 and −4.9 eV. The Si-p states
also appear in the last three peaks (from −7.4 to −4.9 eV) leading to the sp-hybridization. The
rather wide part extends from −4.4 eV to the Fermi energy and the bonding Si-p and Ca-d states
play a dominant role here. The Ca-s, Ca-p and Si-d states do not provide sizeable contributions
in the valence band.

Let us now discuss the origin of the localized peaks (from −10 to −4.9 eV) in the density
of states. It can stem from the fact that Si atoms form specific units—the trigonal starts (see
figures 2 and 3 in [4])—which can be considered as Zintl anions. The formation of such units
occurs because of the superposition of the Ca and Si subcages. In fact, interatomic Ca–Ca
distances in pure Ca (3.95 Å) and in Ca3Si4 (3.58–4.03 Å) are relatively close, allowing Si
atoms to be built in as clusters in the Ca subcage. Similar features have been observed for
Ca2Si [2]. As we have mentioned above, the last valence and the first conduction bands are
characterized by the loop of extrema leading locally to small band dispersion. This, in turn,
gives rise to an abrupt reduction of the density of states near the Fermi level.

3.3. Transport properties

To provide a link between band structure and transport properties, the effective mass tensor
for electrons and holes using the obtained band structure data was calculated. The electron
masses along the principal axes were calculated at the conduction band minimum in the k-
point situated along the K–M direction, while the hole masses were calculated at the valence
band maximum in the k-point along the �–T2 direction (indicated by the arrow in figure 3). The
second derivatives of the energy were calculated by using the five and higher number of points
scheme. The principal axis components of the carrier effective mass tensor are represented in
table 3.

The most important feature is that the specific topology of the loops of extrema always
provides a large value for some of the components of the effective mass tensor, namely the
m yy (mxx ) for the holes (electrons) due to the almost flat bands along the corresponding
directions (see figure 4). A similar situation for the effective mass anisotropy was previously
observed for ReSi1.75 [11] and β–FeSi2 [12] where one of the bands had a very small dispersion
along some direction. This in its turn should lead to a great anisotropy of the transport properties
in Ca3Si4.

If one assumes the contributions of different scattering mechanisms to be independent,
the total mobility according to the Mathiessen approximation is μ−1 = ∑

i μ−1
i , where i

stands for the different scattering mechanisms under consideration. In our case we assumed
μ−1 = μ−1

AC + μ−1
NPO + μ−1

PO + μ−1
IM + μ−1

IMO, where μAC, μNPO, μPO, μIM, μIMO are the carrier
mobilities controlled by scattering by the acoustic lattice mode, nonpolar and polar optical
modes and charged and neutral impurities, respectively. The details of the calculations are
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Figure 6. Mobility μ versus temperature T . The solid line corresponds to the mobility in the [0001]
direction, the dashed one to the mobility in the basal plane.
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Figure 7. The imaginary (ε2) and real (ε1) parts of the dielectric function versus photon energy of
Ca3Si4 for different light polarizations as calculated by FLAPW.

presented elsewhere [11, 13, 14]. The calculated hole mobility with the averaged effective mass
value in the basal plane (m yy was taken to be 40) and with the mzz value for a reasonable set of
parameters is shown in figure 6. In our calculations we used the following parameters: material
density −2.47 g cm−3, mean longitudinal sound velocity estimated to be 1.97 × 106 cm s−1,
Debye temperature of 600 K, high frequency and static dielectric constants of 5 and 25,
respectively, and an ionized impurity or defect concentration of 5 × 1018 cm−3.

According to our theoretical predictions the difference in the hole mobility values in
the basal plane as compared with the one along the [0001] direction can reach an order of
magnitude. There fore we also expect similar effects on the mobility of electrons.

3.4. Dielectric function

In figure 7 we present the dependence of the real and imaginary parts of the dielectric function
of Ca3Si4 on photon energy. Neither the ε2 curve nor the ε1 curve shows any sizeable anisotropy
for different light polarization, whereas for Ca2Si the anisotropy of the optical functions is
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evident [2]. For example, in the case of the imaginary part of the dielectric function of Ca3Si4

the curves for E‖x and E‖z are close in shape: a rapid start at about 0.5 eV, the main maximum
at 1.1 eV followed by a slope to lower values. The rapid increase in the ε2 curves at 0.5 eV can
be attributed to the direct transitions in the L and K points in addition to another saddle point
according to appreciable values of the dipole matrix elements. The static dielectric constant
ε1(0) is about 25 for Ca3Si4, and larger than 16 for Ca2Si [2].

4. Conclusions

In this paper we have predicted that Ca3Si4 is a semiconducting material with an indirect band-
gap of 0.35 eV. Our calculations have been performed without the GW approximation and an
underestimation of the gap value is expected. We believe that the ‘real’ gap can be as large as
0.6 eV and this issue should be checked experimentally. In addition, both the last valence band
and the first conduction band possess a loop of extrema instead of common band dispersion
with maximum/minimum in a k-point. Because of the loop of extrema we have revealed a
large anisotropy of the effective masses for both holes and electrons. This issue in turn led
to a sizeable anisotropy in the mobility of carriers. Finally, our calculations also predict the
isotropic character of optical functions for this material.
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